
Mathematical Modeling and Analysis

Parameter Estimation via
Risk-Based
Optimization
Markus Berndt, berndt@lanl.gov
Daniel M. Tartakovsky, dmt@lanl.gov

Predictability of complex phenomena in phys-
ical systems with uncertain (under- determined
by data) parameters is of central importance for
many LANL programs. In practical applica-
tions, system parameters are often sampled at
selected locations and their values elsewhere on
the numerical grid are inferred through interpo-
lation techniques, such as Kriging. This results
in parameter distributions that are often much
smoother than is realistic. We aim to replace
the currently used interpolation techniques with
an approach that uses risk-based optimization to
populate the parameter space. Unlike traditional
approaches that estimate parameter distributions
without regard for critical behavior of a system,
our parameter estimation approach can yield pa-
rameter distributions that correspond to system
failure.

Several alternative approaches are used to as-
sign the system parameter values to points of the
computational domain where their measurements
are not available. These can be grouped into two
large groups: deterministic and probabilistic. De-
terministic approaches, such as homogenization
and upscaling, ascribe effective (homogenized)
system parameters to the grid blocks of numer-
ical models on the basis of smaller-scale random
(or nonrandom) parameter values. This postulates
local relationships between the relevant system
states that are in fact nonlocal [1]. Among the
probabilistic approaches, is the statistical tech-
nique referred to as Kriging [2]. Using linear or
nonlinear interpolation schemes, a parameter field
is constructed that fits best the statistics derived
from an available data set. This method results
in predicted system states that tend to be much
smoother than their true counterparts.

We are developing a new paradigm for param-
eter estimation, which relies on risk-based op-

timization. Existing parameter estimation tech-
niques result in predictions of system states that
often miss system failures. Instead, in our ap-
proach, searching for system failures drives pa-
rameter estimation and determines their realiz-
ability.
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Diffusion coefficient calculated via minimization
with the objective to minimize the flux inside
(1/4,3/4)2, a given average and variance, while
its value at 30% of the grid points is fixed (sample
points).

To demonstrate this, consider as a simple ex-
ample the steady state diffusion equation on the
unit square, where the diffusion coefficientD, a
function of location, is given at a small number
of sample points in the domain. We are interested
in finding suchD that satisfies some constraints,
e.g. a given averagēD and varianceσ2, These pa-
rameters are determined by sample statistics. We
investigate the set of all possibleD by minimizing
an objective functionG(D), to find best and worst
case representatives

D = argmin
D∈C

G(D). (1)

Defining no-flow boundary conditions at the top
and the bottom, and Dirichlet boundary condi-
tionsu= 2 on the left andu= 1 on the right hand
boundary of the domain, we set

G(D) =w1

∫
(1/4,3/4)2

(D∇u)2dxdy

+w2(D̄−1)2 +w3(σ2−0.1)2,

T-7, MS B284, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 http://math.lanl.gov/

http://math.lanl.gov/


Parameter Estimation via Risk-Based
Optimization

with weights wi . The diffusion coefficientD
that solves the minimization problem (1) results
in the minimum flux−D∇u inside the region
(1/4,3/4)2.

The figure shows the minimizerDmin on a 20×
20 mesh. Here, we impose the constraint that
30% of the values ofD (distributed uniformly
on the computational grid) are set to one. The
sample statistics arēDmin = 0.999, andσ2

D̄min
=

0. The coefficientD is clearly lowest inside the
area(1/4,3/4)2, while still satisfying all imposed
constraints. An interpolation based approach,
such as Kriging, would result in a much smoother
coefficientD. If a system failure was thought to
be associated with a very low value ofD, then us-
ing our approach it is possible to assess the likeli-
hood of such an occurrence.

More complex examples will require better op-
timization algorithms. Such examples can easily
generate very large optimization problems. We
aim to develop new and improve existing opti-
mization algorithms to make our new approach
to parameter estimation practical.

In conclusion, risk-based parameter estimation
paired with efficient optimization techniques is
precisely what is needed to increase confidence
in predictions that are based on limited parameter
data.
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